Arrow Speed Equation:
From: | To: |
The Arrow Speed At Distance equation estimates the velocity of an arrow at a specific distance from the bow, accounting for drag effects. This calculation is essential for archers to understand arrow performance and trajectory at various ranges.
The calculator uses the arrow speed equation:
Where:
Explanation: The equation calculates how much an arrow slows down over distance due to aerodynamic drag, which is proportional to the distance traveled.
Details: Understanding arrow speed at different distances is crucial for accurate shooting, trajectory prediction, and equipment tuning. It helps archers compensate for arrow drop and wind drift at various ranges.
Tips: Enter initial velocity in fps, drag coefficient in fps per yard, and distance in yards. All values must be non-negative. The drag coefficient is typically determined through testing or manufacturer specifications.
Q1: How accurate is this calculation?
A: This provides a linear approximation of velocity loss. Actual arrow performance may vary based on arrow design, fletching, and environmental conditions.
Q2: How do I determine the drag coefficient for my arrows?
A: The drag coefficient is typically measured through chronograph testing at multiple distances or provided by arrow manufacturers based on testing data.
Q3: Does arrow weight affect the drag coefficient?
A: Yes, heavier arrows generally maintain velocity better over distance due to higher momentum, which may result in a lower effective drag coefficient.
Q4: How does temperature affect arrow speed?
A: Colder temperatures increase air density, which may slightly increase drag and result in greater velocity loss over distance.
Q5: Can I use this for crossbow bolts?
A: Yes, the same principles apply, though crossbow bolts typically have different drag characteristics due to their shorter length and different fletching.